Culture-Free Detection of Antibiotic Resistance Markers from Native Patient Samples by Hybridization Capture Sequencing
The increasing incidence of antimicrobial resistance (AMR) is a major global challenge. Routine techniques for molecular AMR marker detection are largely based on low-plex PCR and detect dozens to hundreds of AMR markers. To allow for comprehensive and sensitive profiling of AMR markers, we developed a capture-based next generation sequencing (NGS) workflow featuring a novel AMR marker panel based on the curated AMR database ARESdb. Our primary objective was to compare the sensitivity of target enrichment-based AMR marker detection to metagenomics sequencing. Therefore, we determined the limit of detection (LOD) in synovial fluid and urine samples across four key pathogens. We further demonstrated proof-of-concept for AMR marker profiling from septic samples using a selection of urine samples with confirmed monoinfection. The results showed that the capture-based workflow is more sensitive and requires lower sequencing depth compared with metagenomics sequencing, allowing for comprehensive AMR marker detection with an LOD of 1000 CFU/mL. Combining the ARESdb AMR panel with 16S rRNA gene sequencing allowed for the culture-free detection of bacterial taxa and AMR markers directly from septic patient samples at an average sensitivity of 99%. Summarizing, the newly developed ARESdb AMR panel may serve as a valuable tool for comprehensive and sensitive AMR marker detection.
Top- Ferreira, Ines
- Lepuschitz, Sarah
- Beisken, Stephan
- Fiume, Giuseppe
- Mrazek, Katharina
- Frank, Bernhard J. H.
- Huber, Silke
- Knoll, Miriam A.
- von Haeseler, Arndt
- Materna, Arne
- Hofstaetter, Jochen G.
- Posch, Andreas E.
- Weinberger, Johannes
Category |
Journal Paper |
Divisions |
Bioinformatics and Computational Biology |
Journal or Publication Title |
Microorganisms |
ISSN |
20762607 |
Publisher |
MDPI (Multidisciplinary Digital Publishing Institute) |
Place of Publication |
open access publication |
Number |
1672 |
Volume |
9 |
Date |
5 August 2021 |
Export |